Inverter with open-drain output

Rev. 06 — 7 June 2007

Product data sheet

1. General description

74AHC1G06 and 74AHCT1G06 are high-speed Si-gate CMOS devices. They provide an inverting buffer. The output of these devices is an open-drain and can be connected to other open-drain outputs to implement active-LOW, wired-OR or active-HIGH, wired-AND functions. For digital operation this device must have a pull-up resistor to establish a logic HIGH-level.

The AHC device has CMOS input switching levels and supply voltage range 2 V to 5.5 V.

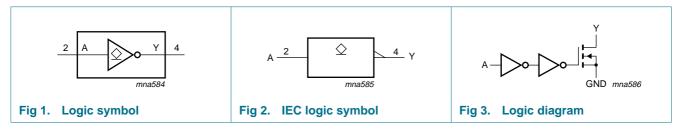
The AHCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V.

2. Features

- High noise immunity
- Low power dissipation
- SOT353-1 and SOT753 package options
- ESD protection:
 - HBM JESD22-A114E: exceeds 2000 V
 - MM JESD22-A115-A: exceeds 200 V
 - CDM JESD22-C101C: exceeds 1000 V
- Specified from –40 °C to +125 °C

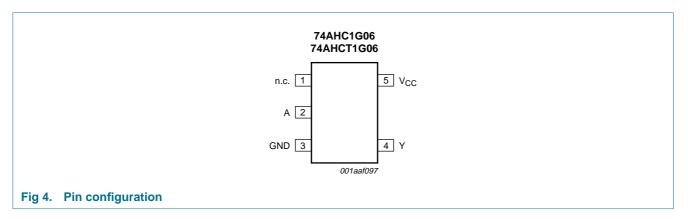
3. Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74AHC1G06GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package;	SOT353-1					
74AHCT1G06GW			5 leads; body width 1.25 mm						
74AHC1G06GV	–40 °C to +125 °C	SC-74A	plastic surface-mounted package; 5 leads	SOT753					
74AHCT1G06GV									



Inverter with open-drain output

4. Marking


Table 2. Marking codes	
Type number	Marking
74AHC1G06GW	AR
74AHC1G06GV	A06
74AHCT1G06GW	CR
74AHCT1G06GV	C06

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
n.c.	1	not connected
A	2	data input
GND	3	ground (0 V)
Y	4	data output
V _{CC}	5	supply voltage

74AHC_AHCT1G06_6
Product data sheet

7. Functional description

Table 4.Function table

H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state

Input	Output
A	Y
L	Z
Н	L

8. Limiting values

Table 5.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	V _I < -0.5 V	-20	-	mA
Ι _{ΟΚ}	output clamping current	$V_{\rm O} < -0.5 \ V$	<u>[1]</u> _	±20	mA
lo	output current	$V_{\rm O} > -0.5 \ V$	-	±25	mA
Vo	output voltage	active mode	<u>[1]</u> –0.5	+7.0	V
		high-impedance mode	<u>[1]</u> –0.5	+7.0	V
I _{CC}	supply current		-	75	mA
I _{GND}	ground current		-75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C	[2] _	250	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For both TSSOP5 and SC-74A packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	74	AHC1G	06	74	AHCT16	606	06 Unit	
			Min	Тур	Max	Min	Тур	Max		
V _{CC}	supply voltage		2.0	5.0	5.5	4.5	5.0	5.5	V	
VI	input voltage		0	-	5.5	0	-	5.5	V	
V _O output	output voltage	active mode	0	-	V _{CC}	0	-	V_{CC}	V	
		high-impedance mode	0	-	6.0	0	-	6.0	V	
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C	
$\Delta t / \Delta V$	input transition rise	V_{CC} = 3.3 V \pm 0.3 V	-	-	100	-	-	-	ns/V	
	and fall rate	$V_{CC}=5.0~V\pm0.5~V$	-	-	20	-	-	20	ns/V	

Inverter with open-drain output

10. Static characteristics

Table 7. **Static characteristics** Voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions 25 °C –40 °C to +85 °C -40 °C to +125 °C Unit Min Тур Max Min Max Min Max For type 74AHC1G06 VIH HIGH-level $V_{CC} = 2.0 V$ 1.5 --1.5 -1.5 -V input voltage $V_{CC} = 3.0 V$ 2.1 -_ 2.1 -2.1 -V $V_{CC} = 5.5 V$ 3.85 3.85 3.85 V ---- $V_{CC} = 2.0 V$ VIL LOW-level --0.5 -0.5 -0.5 V input voltage $V_{CC} = 3.0 V$ -_ 0.9 -0.9 -0.9 V $V_{CC} = 5.5 V$ -1.65 1.65 -1.65 V --VOL LOW-level $V_{I} = V_{IH} \text{ or } V_{II}$ output voltage $I_0 = 50 \ \mu A; \ V_{CC} = 2.0 \ V$ 0 0.1 0.1 _ 0.1 V -_ $I_0 = 50 \ \mu A; V_{CC} = 3.0 \ V$ -0 0.1 -0.1 -0.1 V $I_0 = 50 \ \mu A; V_{CC} = 4.5 \ V$ -0 0.1 -0.1 -0.1 V $I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$ -_ 0.36 -0.44 0.55 V - $I_{O} = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$ 0.44 --0.36 --0.55 V $V_1 = 5.5 V \text{ or GND};$ h input leakage 0.1 1.0 2.0 μA _ -current $V_{CC} = 0 V \text{ to } 5.5 V$ μΑ I_{OZ} **OFF-state** $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or -_ ±0.25 ±2.5 ±10.0 output current GND; V_{CC} = 5.5 V supply current $V_I = V_{CC}$ or GND; $I_O = 0$ A; 1.0 10 20 Icc -μΑ -_ $V_{CC} = 5.5 V$ C input -1.5 10 -10 _ 10 pF capacitance For type 74AHCT1G06 2.0 2.0 **HIGH-level** $V_{CC} = 4.5 \text{ V}$ to 5.5 V 2.0 V VIH _ --input voltage LOW-level $V_{CC} = 4.5 \text{ V}$ to 5.5 V 0.8 V VIL --0.8 -0.8 input voltage Vol LOW-level $V_{I} = V_{IH} \text{ or } V_{II}$; $V_{CC} = 4.5 \text{ V}$ output voltage $I_{0} = 50 \, \mu A$ 0 0.1 0.1 0.1 V ---0.36 0.44 0.55 V $I_0 = 8.0 \text{ mA}$ -_ -- $V_1 = 5.5 V \text{ or GND};$ input leakage 0.1 1.0 2.0 I_I ---μA current $V_{CC} = 0 V \text{ to } 5.5 V$ **OFF-state** $V_I = V_{IH} \text{ or } V_{IL}; V_O = V_{CC} \text{ or}$ ±2.5 ±10.0 μΑ ±0.25 loz -output current GND; V_{CC} = 5.5 V supply current $V_I = V_{CC}$ or GND; $I_O = 0 A$; 10 20 1.0 μΑ Icc ---- $V_{CC} = 5.5 V$ per input pin; $V_1 = 3.4 V$; ΔI_{CC} additional 1.35 1.5 1.5 mΑ -_ -_ supply current other inputs at V_{CC} or GND; $I_0 = 0 A; V_{CC} = 5.5 V$

input

capacitance

74AHC_AHCT1G06_6

C

1.5

10

-

10

10

pF

Inverter with open-drain output

11. Dynamic characteristics

Table 8. Dynamic characteristics

GND = 0 V; $t_r = t_f = \le 3.0$ ns. For test circuit see Figure 6.

Symbol	Parameter	Conditions			25 °C		_40 °C	to +85 °C	−40 °C t	to +125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
For type	74AHC1G06	'									
t _{PZL} OFF-state		A to Y; see Figure 5									
	to LOW	V_{CC} = 3.0 V to 3.6 V	[1]								
	propagation delay	C _L = 15 pF		-	3.7	7.0	1.0	7.7	1.0	8.1	ns
	-	C _L = 50 pF		-	5.2	10.0	1.0	11.0	1.0	11.5	ns
		V_{CC} = 4.5 V to 5.5 V	[2]								
		C _L = 15 pF		-	2.7	4.9	1.0	5.3	1.0	5.6	ns
		C _L = 50 pF		-	3.8	7.0	1.0	7.5	1.0	8.0	ns
t _{PLZ}	LOW to	A to Y; see Figure 5									
	OFF-state	V_{CC} = 3.0 V to 3.6 V	[1]								
	propagation delay	C _L = 15 pF		-	4.8	6.4	1.0	6.9	1.0	7.4	ns
		C _L = 50 pF		-	6.9	10.0	1.0	10.5	1.0	11.0	ns
		V_{CC} = 4.5 V to 5.5 V	[2]								
		C _L = 15 pF		-	3.0	4.1	1.0	4.6	1.0	5.1	ns
		C _L = 50 pF		-	4.3	6.5	1.0	7.0	1.0	7.5	ns
C _{PD}	power dissipation capacitance	per buffer; $C_L = 50 \text{ pF}; \text{ f} = 1 \text{ MHz};$ $V_I = \text{GND to } V_{CC}$	[3]	-	3	-	-	-	-	-	pF
For type	74AHCT1G06										
t _{PZL}	OFF-state	A to Y; see Figure 5									
	to LOW propagation	V_{CC} = 4.5 V to 5.5 V	[2]								
	delay	C _L = 15 pF		-	3.0	5.3	1.0	6.0	1.0	6.3	ns
	-	C _L = 50 pF		-	4.2	7.5	1.0	8.5	1.0	9.0	ns
t _{PLZ}	LOW to	A to Y; see Figure 5									
C	OFF-state	V_{CC} = 4.5 V to 5.5 V	[2]								
	propagation delay	C _L = 15 pF		-	3.2	4.6	1.0	5.1	1.0	5.6	ns
	2	C _L = 50 pF		-	4.5	7.0	1.0	7.5	1.0	8.0	ns
C _{PD}	power dissipation capacitance	per buffer; $C_L = 50 \text{ pF}; \text{ f} = 1 \text{ MHz};$ $V_I = \text{GND to } V_{CC}$	<u>[3]</u>	-	4.5	-	-	-	-	-	pF

[1] Typical values are measured at V_{CC} = 3.3 V.

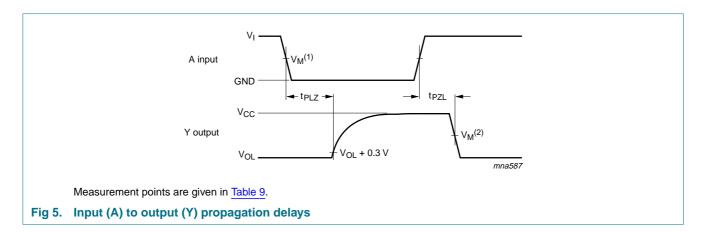
[2] Typical values are measured at V_{CC} = 5.0 V.

[3] C_{PD} is used to determine the dynamic power dissipation P_D (μ W).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

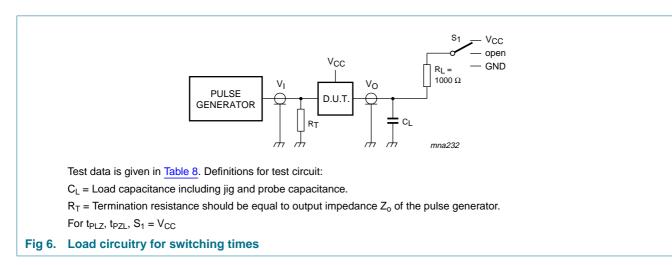
 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

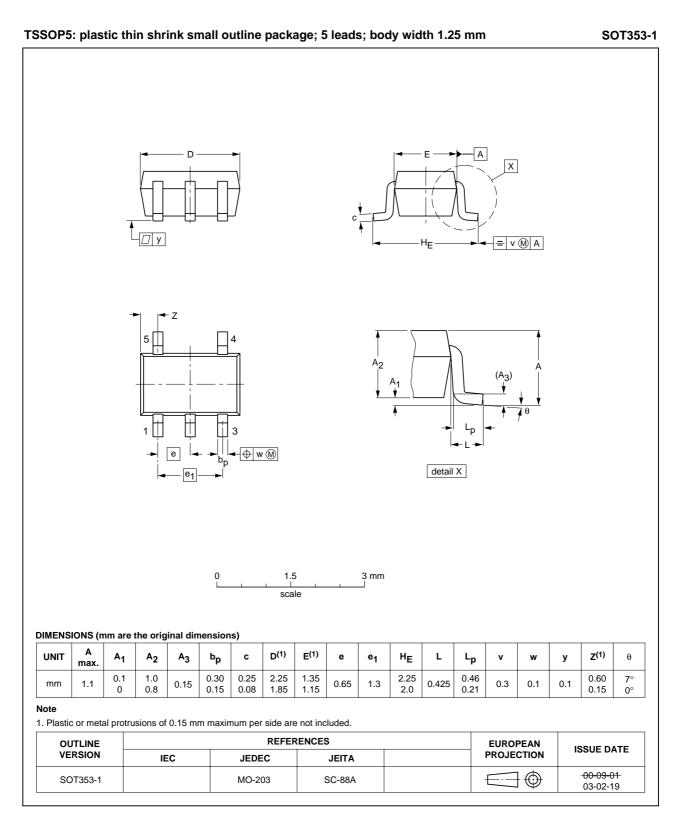

 C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts

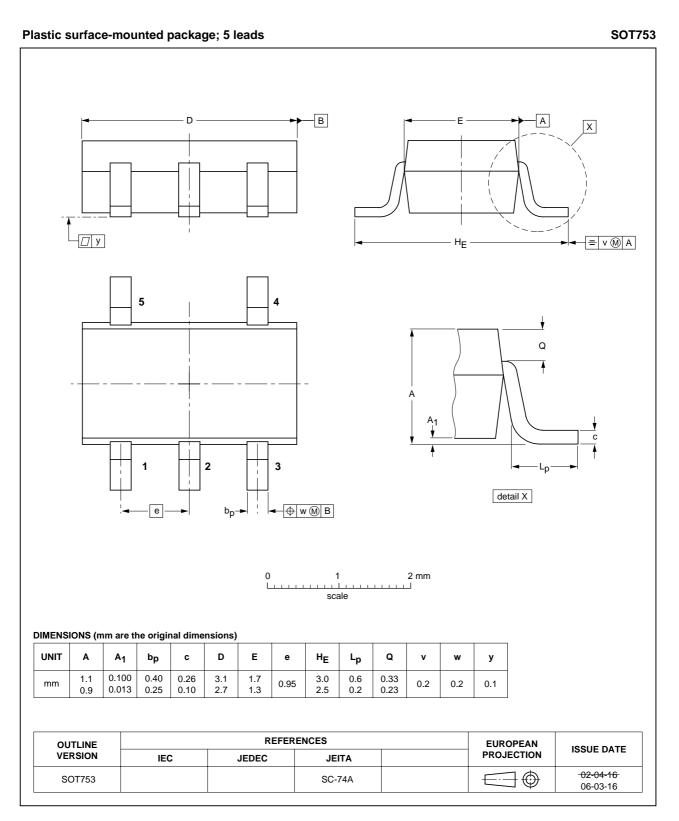
74AHC_AHCT1G06_6


Inverter with open-drain output

12. Waveforms


Table 9.Measurement point

Туре	Input	Output	
	VI	V _M ⁽¹⁾	V _M ⁽²⁾
74AHC1G06	GND to V _{CC}	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$
74AHCT1G06	GND to 3.0 V	1.5 V	$0.5 \times V_{CC}$


Inverter with open-drain output

13. Package outline

Fig 7. Package outline SOT353-1 (TSSOP5)

Inverter with open-drain output

Fig 8. Package outline SOT753 (SC-74A)

Inverter with open-drain output

14. Abbreviations

Table 10.	Abbreviations
Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AHC_AHCT1G06_6	20070607	Product data sheet	-	74AHC_AHCT1G06_5
Modifications:		of this data sheet has been f NXP Semiconductors.	redesigned to comply w	ith the new identity
	 Legal texts h 	have been adapted to the ne	ew company name whe	re appropriate.
	 Package SC 	T353 changed to SOT353-	1 in <u>Section 3</u> and <u>Sect</u>	<u>ion 13</u> .
	 Quick refere 	nce data and Soldering sec	tions removed.	
74AHC_AHCT1G06_5	20021002	Product specification	-	74AHC_AHCT1G06_4
74AHC_AHCT1G06_4	20020528	Product specification	-	74AHC_AHCT1G06_3
74AHC_AHCT1G06_3	20020221	Product specification	-	74AHC_AHCT1G06_2
74AHC_AHCT1G06_2	20010209	Product specification	-	74AHC_AHCT1G06_1
74AHC_AHCT1G06_1	20000501	Product specification	-	-

16. Legal information

16.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

Inverter with open-drain output

18. Contents

1	General description 1
2	Features 1
3	Ordering information 1
4	Marking 2
5	Functional diagram 2
6	Pinning information 2
6.1 6.2	Pinning
0.2 7	Pin description
-	Functional description 3
8	Limiting values 3
9	Recommended operating conditions 3
10	Static characteristics 4
11	Dynamic characteristics 5
12	Waveforms 6
13	Package outline 7
14	Abbreviations 9
15	Revision history 9
16	Legal information 10
16.1	Data sheet status 10
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks 10
17	Contact information 10
18	Contents 11

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 7 June 2007 Document identifier: 74AHC_AHCT1G06_6

